

Rainwater Harvesting

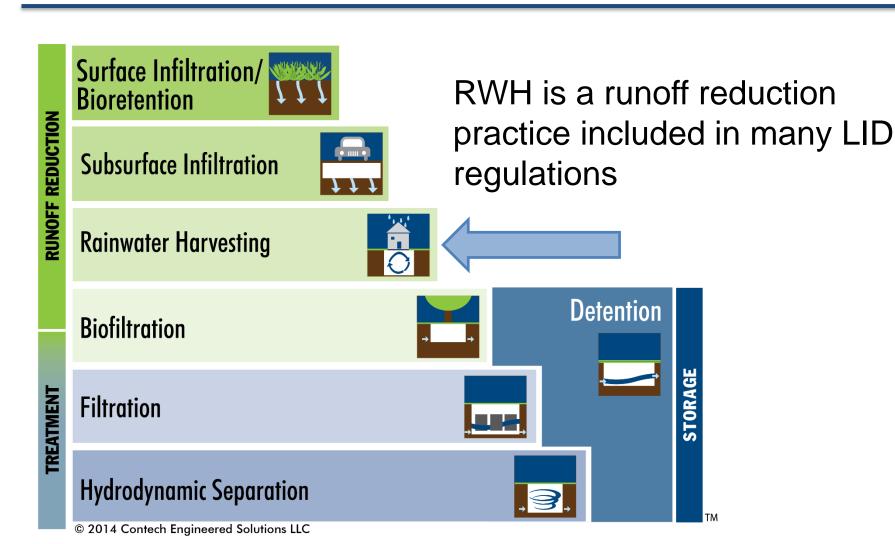
2016 KSA Annual Conference June 30, 2016

Angie Bidlack – Stormwater Consultant Samantha Brown – Regional Regulatory Manager

Contech Engineered Site Solutions

Bridges, Drainage, Stormwater Management, Erosion Control, Structures, Retaining Walls, Roadway & Earth Stabilization

Agenda


- RWH as a Runoff Reduction
 Tool
- System Components
- Design Considerations
- Calculating Benefits

Stormwater Staircase

Divided Water Management

Harvesting as LID

Traditional Water Harvesting is the collection and reuse of stormwater, grey water, and other sources to reduce or eliminate the consumption of municipal potable water.

Water Harvesting for LID is the collection and reuse of stormwater for beneficial purposes to reduce or eliminate post-construction runoff.

RWH – Two Perspectives

	Conservation Focus	Stormwater Focus
Primary Goal	Reduced municipal demand	Eliminate runoff (pollution prevention)
Secondary Benefits	Reduce SW Runoff, Energy, CO ₂	Conservation, Energy, CO ₂
Catchment Area	Maximize, to Increase Supply	Minimize, to Reduce Supply
Water Usage	Minimize and Conserve	Find Reuse Applications
Seasonal Challenge	Dry Season – not enough rain	Wet Season – too much rain
Cistern Goal	Keep it full	Empty it quickly
Economic ROI	Negative – "external costs" not included in market price of water	Positive – best LID solution in many cases

Rainwater Harvesting & LEED

Sustainability Sites		
6.1 Stormwater Quantity	Pre-development peak & quantity	1 pt
6.2 Stormwater Quality	Reduce annual TSS by 80%	1 pt

Water Efficiency		
1.0 Water Efficient Landscaping	Reduce by 50%	2 pt
	No Potable Use	4 pt
2.0 Innovative Wastewater	Reduce potable water used for sewage	2 pt
	50% onsite treatment	2 pt
3.0 Water Use Reduction	30% reduction from Baseline	2 pt
	35% reduction from baseline	3 pt
	40% reduction from baseline	4 pt

echES.com

Rainwater Harvesting & LEED

LEED Credits	
SS 6.1 (Quality)	1
SS 6.2 (Quantity)	1
WE 1 (Irrigation)	4
WE2 (Wastewater)	
WE 3 (Indoor water)	4
Maximum Total	12

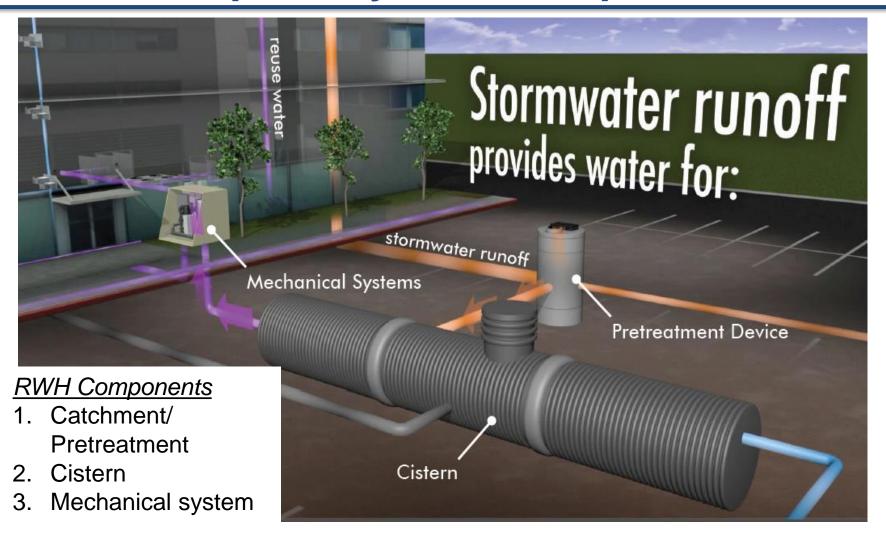
Runoff Reduction: Beyond Irrigation

For Runoff Reduction

- Find reuse applications during wet season
- Irrigation may not be enough to offset runoff

Applications

- Irrigation
- Toilet flushing
- Clothes washing
- Vehicle washing
- Cooling Makeup
- Process Water
- May total 90+% of total water usage



Typical System Components

RWH: Complete System Components

System Components: Catchment & Pretreatment

Catchment

Pretreatment

Storage

Makeup H₂O

Pumps

Treatment

Disinfection

Controls

Catchment

- Rooftop cleaner, needs treatment
- Surface more pollutants

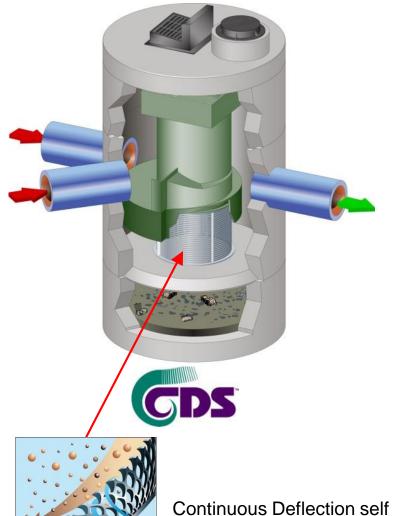
Pretreatment

- Reduce maintenance
- Protect downstream equipment
- Reduce organic matter
- Reduce potential for odor
- Screening: 500 um to 2000 um
- Filtration/Separation: 20um to 200um

Programmable First Flush & Pretreatment

Passive First Flush Diversion

- Volume proportional to catchment area
- Bypasses each time it starts to rain
- Can be 5%-40% of annual runoff


Active First Flush Diversion

- Set rainfall depth and time duration
- Bypasses only when necessary
- <5% of the annual runoff volume

Pretreatment

- Swirl Concentration and continuous deflection separation
- 100% capture of floatable debris
- Sediment removal to 100 micron
- Up to 1 cfs treatment capacity
- Up to 5.6 cubic yard storage capacity
- H-20 Traffic rated
- 100% capture of harvested water with no first flush diversion

System Components: Storage

Catchment

Pretreatment

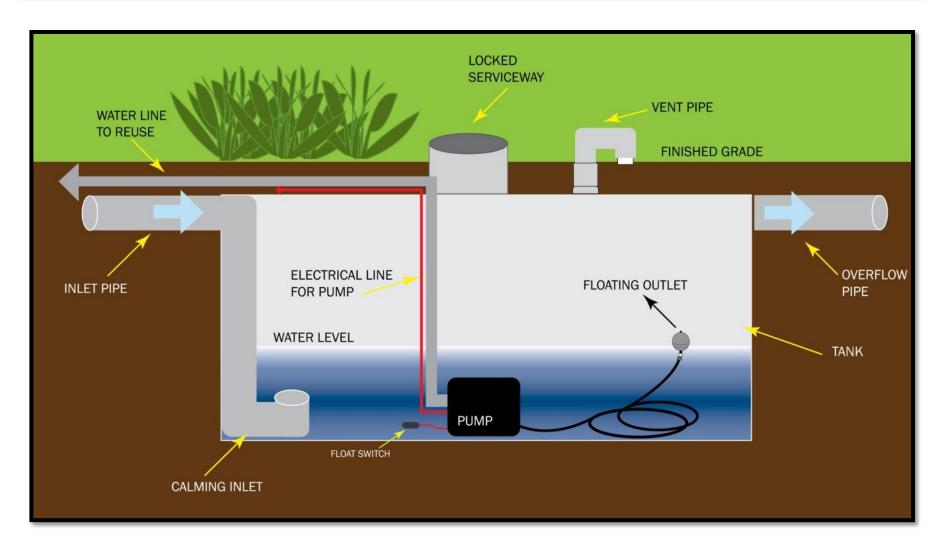
Storage

Makeup H₂O

Pumps

Treatment

Disinfection

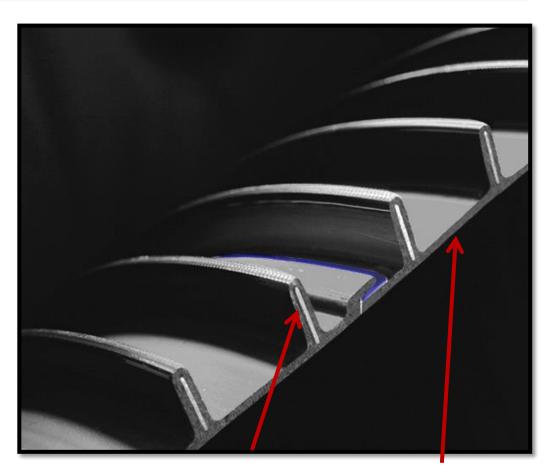

Controls

Considerations

- Above-ground vs Below-ground
- Metal, plastic, concrete, fiberglass
- Watertight integrity
- Ability to overflow when cistern is full
- Anti-buoyant
- Access provided for inspection and maintenance
- Corrosion resistant material
- Capable of maintaining structural integrity under earth and traffic loads

System Components: Storage

Steel Reinforced Polyethylene (SRPE)


Best of Both Materials

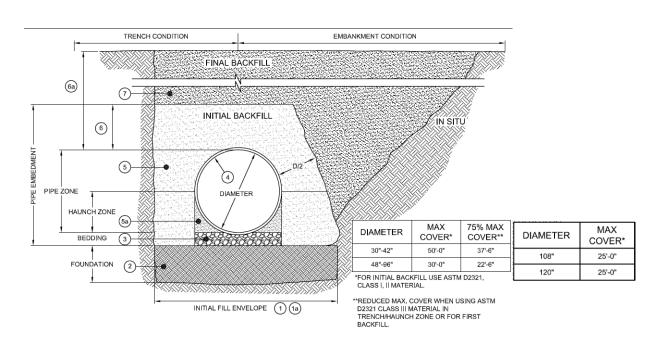
Steel

- 85ksi steel reinforcing
- High load bearing capacity
- Long term structural stability

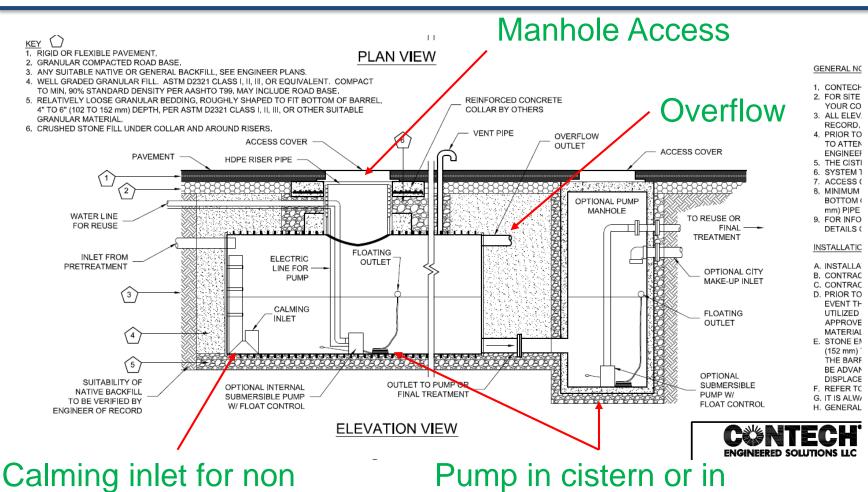
Polyethylene

- High performance HDPE resin
- Superior corrosion resistance
- 100 yr design service life

Encapsulated Steel Reinforcement


PE Pipe Wall

Structural Strength of SRPE


SRPE

- Min cover = 1ft to 3 ft
- Max cover = 25+ ft
- Steel reinforcement carries the load

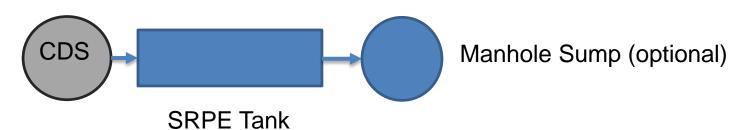
SRPE Standard Detail

Calming inlet for non turbulent flow

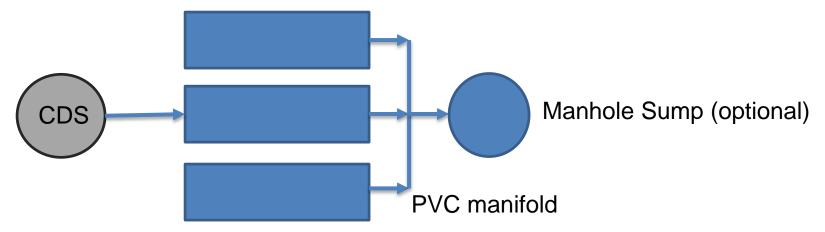
Pump in cistern or in manhole sump

Diam (in)	Max Length (ft)	Max Capacity (gal)
60	48	6,500
72	48	9,500
84	48	13,000
96	48	17,000
108	40	19,000
120	40	22,500

- Available in 60" to 120" diameter
- Storage volumes from 2,000 gal to 22,500 gal in a single tank
- All tanks provided with a calming inlet and inlet / outlet pipe
- All tank provided with 36" access riser

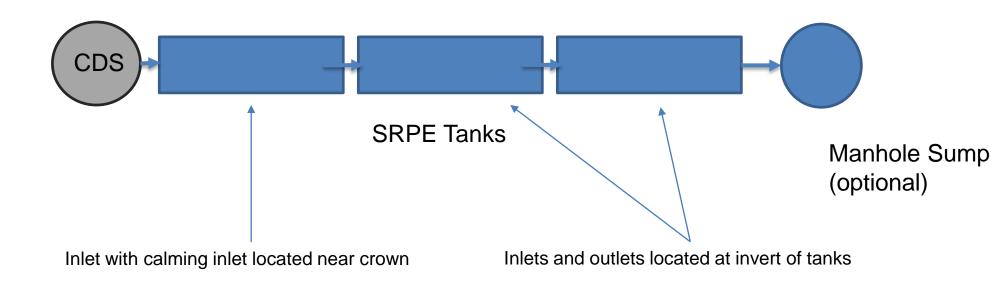

- Fully assembled at factory
- Leak tested at factory
- Several tanks can be manifolded together for large storage capacity

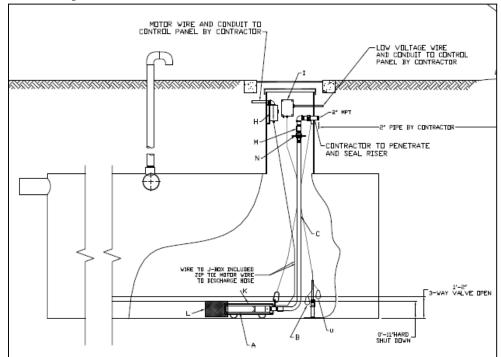
Single Tank Design



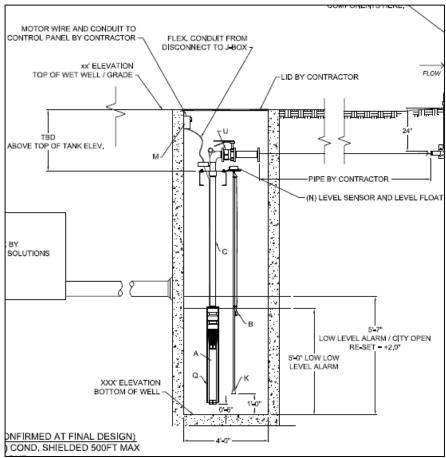
Multiple Tank Design

Parallel Configuration


SRPE Tanks


Multiple Tank Design

Series Configuration



Pump in cistern

- Requires "dead storage" in the bottom of tank to keep pump submerged
- Additional storage volume may be required

Pump in manhole

- Added cost of concrete manhole
- Provides easy access to pump
- Provides less "dead storage"

System Components: Mechanical System

Catchment

Pretreatment

Storage

Makeup H2O

Pumps

Treatment

Disinfection

Controls

Typical Components Options

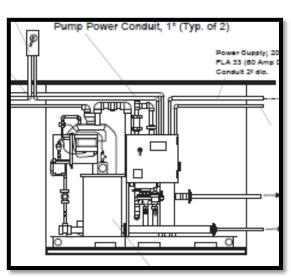
- Treatment
 - Screens; filters; ultra filtration
 - manual or auto back flush
- Make-up Water (code-dependent)
 - Day-tank with air-gap; back-flow preventer
- Disinfection (code-dependent)
 - UV; chlorination
- Pressurization
- Controls
 - Operation; monitoring; tie to building mgmt
- Power Supply
- Enclosure
 - Indoor; Outdoor; Underground

System Components: Mechanical System

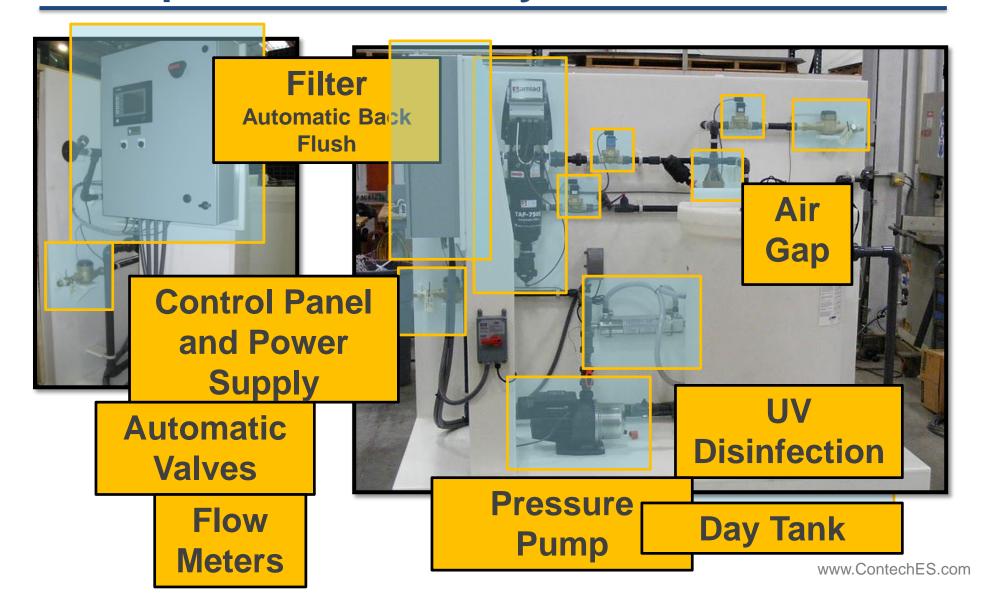
Design based on re-use application

- Drip irrigation
- Spray irrigation
- Toilet flushing
- Cooling tower makeup
- Wash-water

Mechanical System: Install Locations


Indoor Skid Mounted

Outdoor Enclosure



Underground Vault

Example: Mechanical System

UrbanGreen Standard Irrigation Systems

Level 1 Drip Irrigation

Level 2 Drip Irrigation

Level 3 Spray Irrigation

Mechanical System Packages ^{1,2}			
Model	Irrigation Level 1	Irrigation Level 2	Irrigation Level 3
Typical Application	Drip Irrigation (up to 25 gpm)	Drip Irrigation (up to 60 gpm)	Spray Irrigation (up to 40 gpm)
Pump	2HP submersible	2 to 7.5HP submersible	5 to 7.5HP submersible
Filtration	Manual Flush 100 micron	Manual Flush 100 micron	Automatic Flush down to 5 micron
Ultraviolet (UV) Disinfection	No	No	Yes
Water Level Monitor	Low Level Float Switch	Low Level Float Switch	Level Sensor
Outdoor Enclosure	Fiberglass	Painted Steel	Painted Steel
Enclosure Dimensions (inches)	36W x 24D x 36H	50W x 34D x 36H	50W x 34D x 36H
Automatic Backup Water Supply	Cistern fills with city water on cistern low level alarm	City water supplied by valve open on cistern low level alarm	City water supplied by valve open on cistern low level alarm
User Interface	On/Off/Reset Button	LCD interface	PLC with color touchscreen

¹ All systems include one year warranty, and startup and training are included in the cost of each system.

² Additional system configurations for filtration and disinfection are available.

Level 1 Drip Irrigation

Manual Flush Filter

On/Off/Reset Pressure Controller

Level 2 Drip Irrigation

VFD Motor control and LED interface

3 way valve to city water makeup

Manual Flush filter



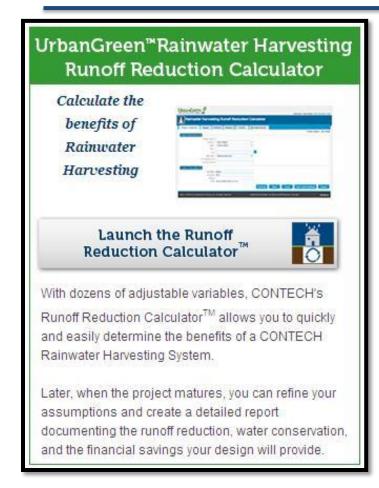
Level 3 Spray Irrigation

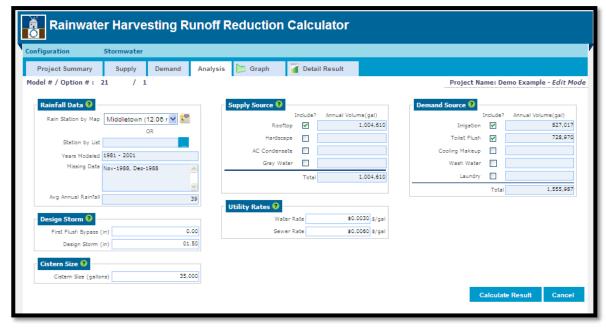
3 way valve to city water makeup

Variable Frequency Drive (VFD)

Automatic flush filter

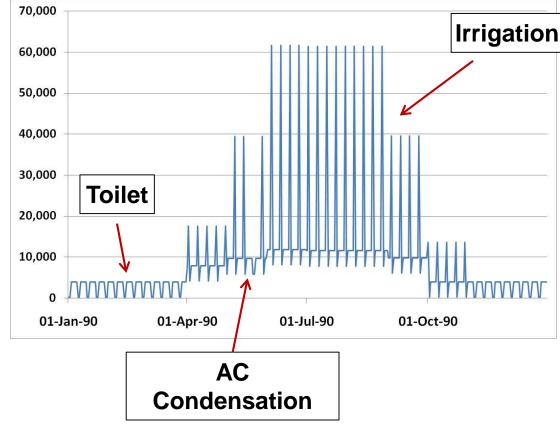
UV disinfection light




Color touch screen

Design Your Own RWH Sizing Online

www.conteches.com/Design-Toolbox/DYO-Project.aspx



Runoff Reduction Model

Modeling

- Continuous daily model
- Local rainfall history
- Seasonal and daily demand
- Seasonal and daily supply
- Outputs:
 - Runoff reduction
 - Water savings
 - Financial savings

Runoff Reduction Model

Location		Supply				Demand		
WA DC Dulles			Source	Include?	Area/Volume	Application	Include?	Annual Volume
			Rooftop (effective ft²)	yes	40,850	Toilet	no	0
Years Modeled	7	Stormwater	Surface (effective ft ²)	no	0	Laundry	no	0
First Flush Bypass (in)	0.00		Total (ft²)		40,850	Wash water	no	0
Design Storm (in)	2.00		AC Condensate (gallons)	no	0	Irrigation	yes	1,065,433
Cistern Size (gallons)	50,000	Scondary	Gray Water (gallons)	no	0	Cooling Makeup	no	0
	50,000		Total (gal)		0	Total		1,065,433

User Variables

- Rain Data
- Supply Sources
- Cistern Size
- First Flush Bypass
- Design Storm
- Water Rates

Runoff Reduction Model: Supply Inputs

			top	Landscape Hardscape		Total
		Traditional	Green Roof			
Basin 1	Area	43,000	0	43,000	43,000	129,000
Dasiii 1	Runoff C	0.95	0.50	0.05	0.90	
Basin 2	Area	0	0	0	0	0
	Runoff C	0.95	0.50	0.05	0.90	
Basin 3	Area	0	0	0	0	0
	Runoff C	0.95	0.50	0.05	0.90	2
Effective	Runoff Area	40,850	0	2,150	38,700	81,700

Secondary Sources of Re-Use Water									
				AC Cond	ensation	Gray Water			
			% of Peak	gal/month	Capture (gal/month)				
Building Sq	Footage (ft ²)	172,000	Jan	0%	0	0			
Condensation	gal/hr/ft²	0.0007	Feb	0%	0	0			
	gal/hr	246	March	0%	0	0			
Rate	gal/day	5,897	April	25%	44,229	0			
Peak	gal/month	176,914	May	50%	88,457	0			
Assumptions:			June	75%	132,686	0			
			July	100%	176,914	0			
			Aug	100%	176,914	0			
			Sep	66%	116,763	0			
			Oct	25%	44,229	0			
			Nov	0%	0	0			
			Dec	0%	0	0			
			Total		780,192	0			

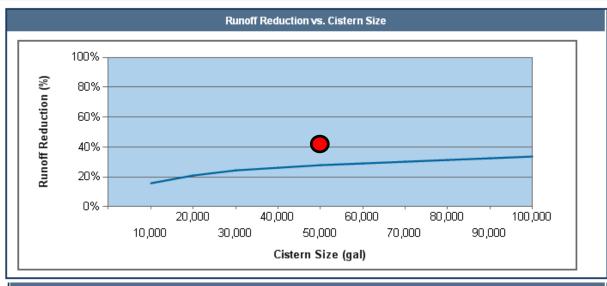
www.comechES.com

Runoff Reduction Model: Demand Inputs

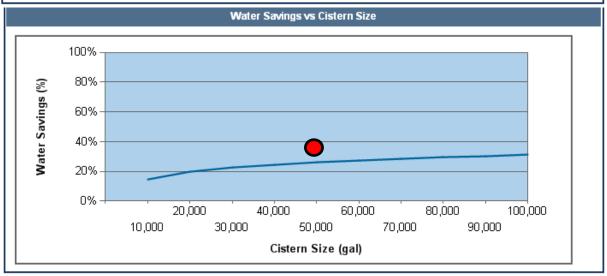
	Decidential	Units	People/Unit	Occupancy	GPD/Person	Demand	l (gal)
	Residential	0	0	100%	8	0	
		Flushe	s per day	Volume		Daily De	mand
	Office/Com	Weekday	Weekend	(gal per flush)		Weekday	Weekend
		3,058	153	1.28		3,914	196
	Retail	Flushes per day		Volume		Daily De	mand
Toilet		Weekday	Weekend	(gal per flush)		Weekday	Weekend
Tonet		0	0	1.28		0	0
		Vi	sitor	Flushes	Volume	Daily De	mand
	Other	Weekday	Weekend	(per Visitor)	(gal per	Weekday	Weekend
		0	0	1.28	1	0	0
						3,914	196
	Total				Daily Average	2,84	4
					Annual Total	1,038,	177

		Loads/Day	Gallons/Load	Cold Fraction	Daily Total
	Residential	0	40	70%	0
Laundry	Non-Res	0	0	50%	0
	Daily Total				0
	Annual Total				0

Wash Water	Daily Average			
	Residential	0		
	Non-Res	0		
	Daily Total	0		
	Annual Total	0		

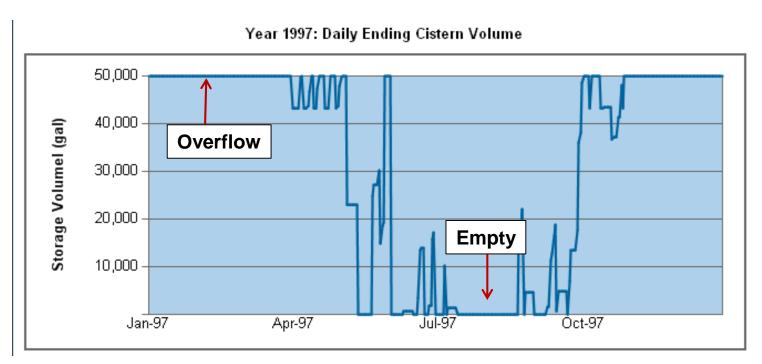

	Irriga	ation	Cooling Makeup				
	Area	ı (ft²)	Gallons of blow down				
	43,	000	makeup required per				
	Input	Units	day				
	Inches p	er week	uay				
Jan	0.0	0	0				
Feb	0.0	0	0				
Mar	0.0	0	0				
Apr	0.3	6,701	3,939				
May	1.0	26,803	5,718				
Jun	2.0	53,607	7,878				
July	2.0	53,607	7,623				
Aug	2.0	53,607	7,623				
Sep	1.0	26,803	5,908				
Oct	0.3	6,701	0				
Nov	0.0	0	0				
Dec	0.0	0	0				
Annua	al Demand	951,518	1,181,640				

	Area (ft²)	Occupancy
Total Building Space	172,000	
Office/Com	0	764
Retail	0	0
School	0	



RWH Model Outputs: Cistern Size Optimization

Runoff Reduction vs.
Cistern Size



Water Savings vs.
Cistern Size

Daily Ending Cistern Volume

20 years of geographic specific rainfall data will model water levels in cistern

RWH Model: Reported Results

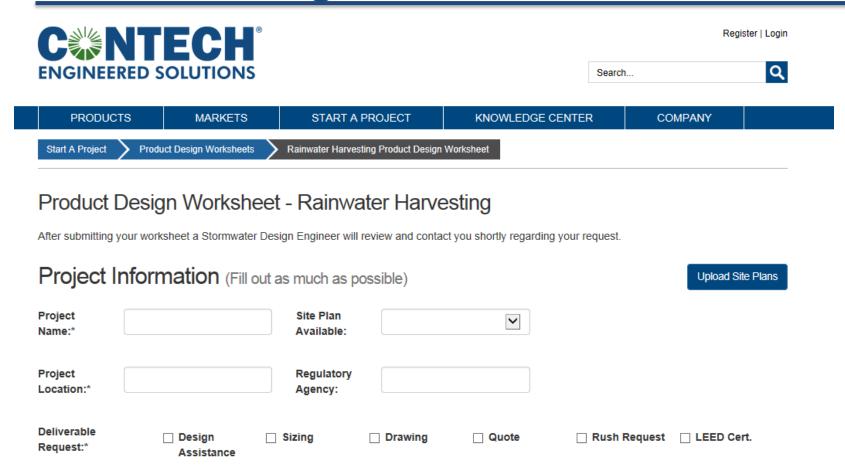
	Rair	nfall	Storm	water	Sup	ply	Demand	Captured
	Total	Targeted	Targeted	Peak	TargetedSW	Total	Demand	Captureu
Average	37	36	1,830,907	25,719	2,191,309	2,197,432	5,272,352	1,456,926
Max Year	63	62	3,130,455	44,204	3,130,455	3,535,061	5,272,352	1,710,996
Total	767	765	38,449,037	128,594	46,017,482	46,146,076	110,719,392	30,595,437

	Runoff Retained (Targeted Rainfall)		Runoff Retained (Targeted Rainfall) Water Savings		Total Retained (Secon	Savings	
Average	1,096,523	62%	1,452,740	28%	1,456,926	68%	\$13,112
Max	1,350,594	43%	1,709,101	32%	1,710,996	48%	\$15,399
Total	23,026,991	60%	30,507,538	28%	30,595,437	66%	\$275,360

Runoff Reduction

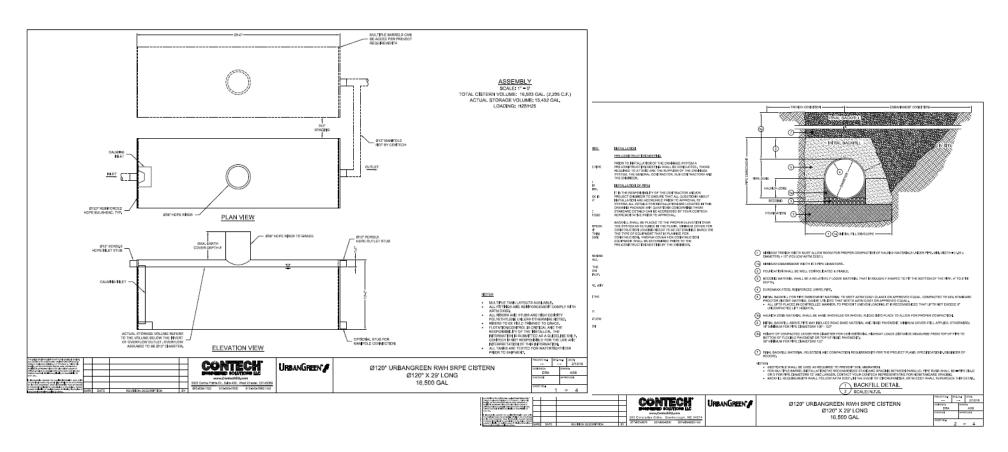
- 60%
- 1.1M gal/year

Water Savings


- 28%
- 1.4M gal/year

Financial Savings

• \$13,000/yr


Product Design online

- Online Product Design Worksheet (PDW)
- www.ContechES.com

Standard Drawings- Online

Water Management Convergence

Contech Rainwater Harvesting

- Complete packaged RWH systems
- Integrated design approach for a complete stormwater solution
- Design assistance at every phase

Your Stormwater Support team

QUESTIONS?

Angie Bidlack, PE
abidlack@conteches.com
317-586-3175

Samantha Brown
sbrown@conteches.com
859-321-5825

