

STRAND ASSOCIATES ${ }^{\oplus}$

Excellence in Engineering Since 1946

Strand Associates, Inc. ${ }^{\oplus}$ ($s^{7} \underline{\underline{Z}}$)

Stormwater Master Planning to Address Flooding, Hydromodification, and Water Quality

Kentucky Stormwater Association

July 20, 2017

Chris Rust, P.E.

ASSOCIATES

Agenda

- Stormwater Master Planning Considerations
- Water Quantity
- Water Quality
- Asset Management
- Regulatory Compliance
- Upper Woolper Creek Watershed Case Study

Stormwater Master Planning Considerations

- Water Quantity

Flooding Issues

Detention/Retention Basins

Stormwater Master Planning Considerations

- Water Quality

Hydromodification Issues
Green Infrastructure

Stormwater Master Planning Considerations

- Asset Management

Storm Infrastructure Issues

- Regulatory Compliance

Stormwater Master Planning Considerations

Stormwater master planning can mean many different things....

Upper Woolper Creek Watershed Case Study

Upper Woolper Creek Watershed Case Study

- Project partners and collaboration key to the development and implementation of stormwater master plan.

BOONE COUNTY

KENTUCKY

Upper Woolper Creek Watershed Case Study

Hydromodification Issues

Water Quality Issues

How was Woolper Creek Graded?

1. Information collected was divided into indicators of water quality or indicators of biological health.
2. Each indicator received a grade, A through F, according to the results of our study, which were compared to
health and science requirements and health and science requirements a
KDOW scientific information. KDOW scientific information.
The grades from each biological 3. The grades from each biological
health indicator were averaged to health indicator were averaged to
. Similarly, each indicator of water
Suality was averaged to achieve a quality was averaged
3. These two scores were averaged to achieve a watershed health grade.

Water quality issues within the watershed are worst in locations immediately downstream of Upper Woolper Creek watershed study area.

Water Quantity / Flooding Issues

Evaluation of Existing Culverts

Evaluation of Existing Culverts

Evaluation of Existing Culverts

Understanding of Historic Rainfall Events

June 25, 2009 Rainfall Event (Hourly Rainfall Recorded at CVG Airport)

Time	Incremental Rainfall (in)	Cumulative Rainfall (in)
2:00 p.m.	0.11	0.11
6:00 p.m.	0.57	0.68
7:00 p.m.	1.95	2.63
8:00 p.m.	0.02	2.65

2.52 inches of rainfall with a 2-hour duration is approximately equivalent to a 10-year storm event.

Understanding of Historic Rainfall Events

NEXRAD data indicated as much as 4 inches of rainfall

Upper Woolper Creek Watershed Existing Conditions

Looking Back to Understand Land Cover Changes

Looking Back to Understand Land Cover Changes

Impacts of Impervious Surfaces

Evaluation of Existing Detention Basins

Evaluation of Existing Detention Basins

Basin \#	Basin Name	Owner	Drainage Area (acres)	Impervious Area (acres)	Perc. Imperv.	Storage Vol. (ac-ft)
1	Innotrac / Hebron Industrial Park	Private - Industry	79.67	50.26	63.09\%	20.31
2	Prologis Park / Amazon / Safeway	Private - Industry	39.12	32.44	82.92\%	7.77
3	Xpedx	Private - Industry	31.14	21.60	69.36\%	2.01
4	Cornerstone Estates	Residential	20.64	2.88	13.95\%	2.61
5	Kroger / Conner Crossing	Private - Commercial	16.42	12.61	76.80\%	3.08
6	Penny Lane	Residential	12.89	3.44	26.69\%	0.43
7	Shamu Drive	SD1	10.76	4.32	40.15\%	0.35
8	Lauren Meadows Drive	Residential	7.82	2.14	27.37\%	0.06
9	2202 West Horizon	SD1	7.50	3.09	41.20\%	0.11
10	Fister Place Boulevard	Residential	5.87	2.46	41.91\%	0.64
11	2296 West Horizon	SD1	5.37	2.14	39.85\%	0.22
12	Cincinnati Machine Bay Expansion	Private - Industry	4.02	2.65	65.92\%	0.02
13	McDonald's	Private - Commercial	2.67	0.89	33.33\%	0.07
14	Medical Arts Dr / Gold Star / Heritage Bank	Private - Commercial	1.95	1.37	70.26\%	0.08
15	Church of Jesus Christ of Latter-Day Saints	Private - Religion	1.74	0.76	43.68\%	0.25
16	Benjamin Lane	SD1	1.72	0.91	52.91\%	0.04
17	Fifth Third Bank	Private - Commercial	0.95	0.67	70.53\%	0.09
Total	-	-	250.25	144.63	-	38.15

Evaluation of Existing Detention Basins

Innotrac / Hebron Industrial Park

SMALL

Benjamin Lane

Shamu Drive

Evaluation of Existing Detention Basins

Basin \#	Basin Name	Owner	LIDAR Storage Vol. (ac-ft)	Design Storage Vol. (ac-ft)	Percent Difference
1	Innotrac / Hebron Industrial Park	Private - Industry	20.31	20.53	-1.1\%
4	Cornerstone Estates	Residential	2.61	6.69	-61.0\%
5	Kroger / Conner Crossing	Private - Commercial	3.08	3.43	-10.2\%
6	Penny Lane	Residential	0.43	1.27	-66.1\%
7	Shamu Drive	SD1	0.35	0.63	-44.5\%
8	Lauren Meadows Drive	Residential	0.06	0.22	-72.1\%
9	2202 West Horizon	SD1	0.11	0.52	-78.9\%
10	Fister Place Boulevard	Residential	0.64	0.89	-27.7\%
11	2296 West Horizon	SD1	0.22	0.42	-49.0\%
12	Cincinnati Machine Bay Expansion	Private - Industry	0.02	0.34	-93.1\%
13	McDonald's	Private - Commercial	0.07	0.12	-46.4\%
14	Medical Arts Dr / Gold Star / Heritage Bank	Private - Commercial	0.08	0.11	-22.0\%
15	Church of Jesus Christ of Latter-Day Saints	Private - Religion	0.25	0.44	-43.3\%
Total	-	-	28.23	35.61	-20.7\%

Identifying Opportunities for Detention Basin Retrofits

Basin \#	Basin Name	Owner	Drainage Area (acres)	Impervious Area (acres)	Perc. Imperv.	Storage Vol. (ac-ft)
1	Innotrac / Hebron Industrial Park	Private - Industry	79.67	50.26	63.09\%	20.31
2	Prologis Park / Amazon / Safeway	Private - Industry	39.12	32.44	82.92\%	7.77
3	Xpedx	Private - Industry	31.14	21.60	69.36\%	2.01
4	Cornerstone Estates	Residential	20.64	2.88	13.95\%	2.61
5	Kroger / Conner Crossing	Private - Commercial	16.42	12.61	76.80\%	3.08
6	Penny Lane	Residential	12.89	3.44	26.69\%	0.43
7	Shamu Drive	SD1	10.76	4.32	40.15\%	0.35

Statistics on "Big 4" Detention Basins:

- Total drainage area of 166.35 acres represents 66% of drainage area to all detention basins.
- Impervious drainage area of 116.91 acres represents 81% of impervious area to all detention basins.
- Storage volume of 33.2 ac-ft represents 87% of storage volume provided by all detention basins.

| 15 | Church of Jesus Christ of Latter-Day Saints | Private - Religion | 1.74 | 0.76 | 43.68% | 0.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | Benjamin Lane | SD1 | 1.72 | 0.91 | 52.91% | 0.04 |
| 17 | Fifth Third Bank | Private - Commercial | 0.95 | 0.67 | $\mathbf{7 0 . 5 3 \%}$ | 0.09 |
| Total | - | - | $\mathbf{2 5 0 . 2 5}$ | $\mathbf{1 4 4 . 6 3}$ | $\mathbf{-}$ | $\mathbf{3 8 . 1 5}$ |

Identifying Opportunities for Detention Basin Retrofits

Identifying Opportunities for Detention Basin Retrofits

Identifying Opportunities for Detention Basin Retrofits

s

STRAND

Evaluating Opportunities for Detention Basin Retrofits

Evaluating Opportunities for Detention Basin Retrofits

Evaluating Opportunities for Detention Basin Retrofits

Water Quantity / Flood Reduction Benefits

	Existing Conditions	Alternative No. 1 Culvert Replacement		Alternative No. 2 Culvert Replacement with Detention Basin Retrofits	
Culvert Location	Peak Flow Rate (cfs)	Peak Flow Rate (cfs)	Percent Increase	Peak Flow Rate (cfs)	Percent Increase
Benjamin Lane	351	356	1.4\%	314	-10.5\%
Lauren Meadows Drive	362	368	1.7\%	327	-9.7\%
2607 Petersburg Road	376	386	2.7\%	346	-8.0\%
2903 Petersburg Road	453	464	2.4\%	426	-6.0\%
2939 Petersburg Road	462	474	2.6\%	437	-5.4\%
Bullittsville Road	470	481	2.3\%	445	-5.3\%
Peel Road	1,043	1,049	0.6\%	1,023	-1.9\%
Culvert Location	WSE (ft)	WSE (ft)	Change (ft)	WSE (ft)	Change (ft)
Benjamin Lane	807.16	805.61	-1.55	805.47	-1.69
Lauren Meadows Drive	804.53	804.56	0.03	804.37	-0.16
2607 Petersburg Road	798.17	798.20	0.03	798.08	-0.09
2903 Petersburg Road	783.78	783.88	0.10	783.57	-0.21
2939 Petersburg Road	780.65	780.68	0.03	780.58	-0.07
Bullittsville Road	776.18	776.26	0.08	775.97	-0.21
Peel Road	757.92	757.94	0.02	757.87	-0.05

Strategic detention basin retrofits can help offset the increased peak flow rates and water surface

Water Quality / Hydromodification Benefits

Bullittsville Road - 2-year, 24-hour

Water Quality / Hydromodification Benefits

	Predeveloped/ Undeveloped	Post-Developed		
		Existing Conditions	Existing Minus Flow from Big 4	Existing Minus Flow from All 17
Peak Flow (cfs)	353	538	504	470
Minutes $>\mathrm{Q}_{\text {critical }}$	168	180	132	123
Sediment (tons)	120	253	188	168
\% Change from Pre-Developed	Predeveloped/ Undeveloped	Post-Developed		
		Existing Conditions	Existing Minus Flow from Big 4	Existing Minus Flow from All 17
Peak Flow (cfs)	-	52\%	43\%	33\%
Minutes $>$ Q Crritical	-	7\%	-21\%	-27\%
Sediment (tons)	-	111\%	57\%	40\%
EXCESS Peaks, Duration, and Sediment Transport	Predeveloped/ Undeveloped	Post-Developed		
		Existing Conditions	Existing Minus Flow from Big 4	Existing Minus Flow from All 17
Peak Flow (cfs)	-	185	151	116
Minutes $>\mathrm{Q}_{\text {critical }}$	-	12	-36	-45
Sediment (tons)	-	133	68	48

- Goal: Reduce excess sediment transport by 100%
- Detention basin retrofits at the 4 biggest detention basins $=49 \%$ of goal
- Detention basin retrofits at all 17 detention basins $=64 \%$ of goal

Upper Woolper Creek Watershed Case Study

- Understanding of magnitude of stormwater management issues is important to guide stormwater master planning initiatives.
- Identification of stormwater management improvements through stormwater master planning can potentially lead to improvements in water quantity (flood reduction) and water quality (sediment transport reduction) improvements.
- Simple modifications at existing detention basins with excess storage capacity can have a big impact downstream.
- Collaboration and partnerships are critical for stormwater master planning evaluations and implementation.

Strand Associates, Inc. ${ }^{\circledR}\left({ }^{\wedge}\right)$

QUESTIONS?

Chris Rust, P.E.
513.861.5600
chris.rust@strand.com

STRAND ASSOCIATES ${ }^{\oplus}$

Excellence in Engineering Since 1946

